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Abstract
Recently we have demonstrated how to use partner symmetries for obtaining
noninvariant solutions of the heavenly equations of Plebañski that govern
heavenly gravitational metrics. In this paper, we present a classification of
scalar second-order PDEs with four variables that possess partner symmetries
and contain only second derivatives of the unknown. We present a general form
of such a PDE together with recursion relations between partner symmetries.
This general PDE is transformed to several simplest canonical forms containing
two heavenly equations of Plebañski among them and two other nonlinear
equations which we call the mixed heavenly equation and asymmetric heavenly
equation. We have calculated all the point and contact symmetries of all the
canonical equations which can be used as an input in our recursion relations.
On an example of the mixed heavenly equation, we show how to use partner
symmetries for obtaining noninvariant solutions of PDEs by a lift from invariant
solutions. Finally, we present Ricci-flat self-dual metrics governed by solutions
of the mixed heavenly equation and its Legendre transform.

PACS numbers: 02.30.Jr, 04.20.Jb
Mathematics Subject Classification: 35Q75, 83C15

1. Introduction

In his paper [1], Plebañski introduced heavenly equations for a single potential generating
(anti-)self-dual heavenly metrics which satisfy complex vacuum Einstein equations. Two real
cross sections of these complex metrics, Kähler metrics with Euclidean or ultra-hyperbolic
signature, are generated by the elliptic and hyperbolic complex Monge—Ampère equation
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(CMA) respectively, the particular cases of the first heavenly equation. Solutions of CMA
play an important role in the theory of gravitational instantons [2], where all gravitational
metrics obtained so far, apart from the ones that we obtained lately [3, 4], have Killing
vectors, i.e. admit continuous symmetries. This implies symmetry reduction in the number of
independent variables in metric components [5], so these metrics actually live on manifolds
of dimensions less than 4.

Recently we introduced the concept of partner symmetries and applied them to obtain
noninvariant solutions of the complex Monge–Ampère equation and the second heavenly
equation of Plebañski [3, 4, 6, 7]. Only such solutions could generate heavenly metrics
with no Killing vectors, so that the metric components would depend on all four independent
variables. Partner symmetries constitute a certain type of nonlocal symmetries and solution,
that are invariant with respect to these nonlocal symmetries, are generically noninvariant
solution in the usual sense, i.e. they depend on all four variables, so that no symmetry
reduction in the number of independent variables occurs. The idea of using the invariance
under nonlocal symmetries in order to get noninvariant solutions, suggested first by Dunajski
and Mason [8, 9], clarified the meaning of differential constraints, which we used earlier in
[10, 11] to derive noninvariant solutions of CMA. Since the partner symmetries and their use
for lifting invariant solutions to noninvariant ones [4, 7] proved to be an appropriate tool for
constructing noninvariant solutions of partial differential equations (PDEs) and a PDE taken
at random would not admit partner symmetries, the natural question arises: how general this
method of obtaining noninvariant solutions can be, or, in other words, what is the general form
of equations that possess partner symmetries?

To give a partial answer to this question, in this paper we present some results on a
classification of the second-order PDEs of the general form

F(utt , utx, uty, utz, uxx, uxy, uxz, uyy, uyz, uzz, ut , ux, uy, uz, u, t, x, y, z) = 0 (1.1)

that possess partner symmetries. Here u is the unknown that depends on the four independent
variables t, x, y, z and the subscripts denote partial derivatives of u, e.g. utt = ∂2u/∂t2,
utx = ∂2u/∂t∂x . . . . Although we have derived a complete set of equations for F such that
equation (1.1) admits partner symmetries, we are currently able to give a general solution to
these equations only for F that depends only on second derivatives of u. Thus, we obtain a
classification of PDEs of the form

F(utt , utx, uty, utz, uxx, uxy, uxz, uyy, uyz, uzz) = 0 (1.2)

that possess partner symmetries.
Our definition of partner symmetries requires the following two conditions to be satisfied.

(i) The symmetry condition for PDE (1.1) (determining an equation for symmetries) has the
form of a two-dimensional divergence that implies the existence of a single potential for
each symmetry.

(ii) The potential of each symmetry is itself a symmetry of (1.1), i.e. a partner symmetry for
the original symmetry.

The first condition is satisfied in two steps: at first we require the symmetry condition to
have the form of a four-dimensional divergence and then reduce this to a two-dimensional
divergence by imposing additional constraints on F. We note that it was also possible to
use a four-dimensional divergence form by introducing several potentials, as was shown, for
example, by Bluman and Kumei [12], which would probably modify our concept of partner
symmetries. This work is currently in progress.
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In section 2, we derive the restriction on the form of equation (1.1) implied by
the requirement that the symmetry condition should have the form of a four-dimensional
divergence: the left-hand side of equation (1.1) itself should be a four-dimensional divergence,
so that (1.1) becomes a conservation law.

In section 3, we derive further conditions on F under which the four-dimensional
divergence form of the symmetry condition is reduced to a two-dimensional divergence form
which implies the existence of a single potential for each symmetry of (1.1).

In section 4, we require that the potential of a symmetry should itself be a symmetry
of equation (1.1) and obtain the final set of equations for F. The definition of the symmetry
potential then becomes a recursion relation for symmetries which generically maps any local
symmetry into a certain nonlocal symmetry. To have an explicit form of this recursion
relation, we still need a solution of the equations for F. We note that our symmetry potential is
completely different from potential symmetries of Bluman and Kumei [12], where potentials
are introduced not for symmetries but for PDEs, set in a divergence form, and symmetries are
allowed to depend on these potential variables.

In section 5, we attempt to solve the set of equations for F. The solution process in full
generality turns out to be too lengthy and suggests many cases and subcases to be considered.
Therefore, here we restrict ourselves to the case where F in (1.1) depends only on the second
derivatives of u and the equation takes the form (1.2). Then we obtain a general solution for
F on the left-hand side of (1.2), that is, a general form of the second-order PDE with four
variables containing only second derivatives of u that possesses partner symmetries, up to a
change of notation for independent variables. We also obtain a recursion relation between
partner symmetries in an explicit form.

In section 6, we derive a complete set of canonical forms, to which the general PDE with
partner symmetries can be transformed by point and Legendre transformations, together with
recursions for symmetries of these canonical equations. Among these canonical forms we
find the first and second equations of Plebañski and two other nonlinear equations which we
call the mixed heavenly equation and asymmetric heavenly equation. The mixed heavenly
equation turns out to be related by a partial Legendre transformation to Husain’s heavenly
equation [13–15], which is an alternative form of the self-dual gravity equation related to the
chiral model approach to self-dual gravity.

In section 7, we find all the point and contact symmetries of the canonical equations.
These symmetries can be used in the recursion relations both for the original symmetry and
for its potential. The recursion relations then become differential constraints that determine
solutions which are invariant under a certain nonlocal symmetry closely related to the partner
symmetries. However, they are still noninvariant solutions in the usual sense, with no symmetry
reduction in the number of independent variables.

In section 8, we demonstrate an application of partner symmetries for finding noninvariant
solutions of PDEs on an example of the mixed heavenly equation. We choose both symmetries
in the recursion relations as translational symmetries, with the recursions becoming differential
constraints, and then show that Legendre transformation in two variables of both the equation
and two differential constraints leads to a set of three linear equations with constant coefficients.
One of these equations depends only on three variables, containing the fourth variable merely
as a parameter, and coincides with the Legendre transform of the translational symmetry
reduction of the mixed heavenly equation, but expressed in new variables. Two other linear
equations provide a lift of any solution of this equation, which is an invariant solution to the
mixed heavenly equation, to a noninvariant solution that depends on all four variables. We
present explicitly a linear combination of exponential solutions and a polynomial solution as
examples of such solutions.
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In section 9, we obtain Ricci-flat mixed heavenly metric in the self-dual gravity,
governed by solutions of the mixed heavenly equation, by using a one-dimensional
Legendre transformation of Husain’s heavenly metric with a subsequent symmetrization
of the transformed metric. Then we apply the linearizing Legendre transformation from
section 8 to the mixed heavenly metric to obtain the Ricci-flat self-dual metric with a potential
satisfying the Legendre transformed mixed heavenly equation. We are now able to use our
solutions of the latter equation, that are given in section 8, in the obtained metric or any
other solutions of the above-mentioned three linear PDEs with constant coefficients. In this
way we arrive at an explicit form of a Ricci-flat self-dual metric with components generically
depending on all four independent variables which, as a consequence, will admit no continuous
symmetries.

We have to mention also that a different classification of integrable three- and four-
dimensional PDEs, that contain only second derivatives of the unknown, was given by
Ferapontov et al in [16, 17]. In this approach integrability is understood as the existence
of sufficiently many hydrodynamic reductions, which is a requirement completely different
from the existence of partner symmetries and therefore the results are also completely
different.

2. Divergence form of symmetry condition

Let ϕ be a symmetry characteristic [18] of (1.1). Then the symmetry condition for symmetries
ϕ admitted by (1.1) is determined by vanishing of the Fréchet derivative of F on solutions of
(1.1):

Â(ϕ) ≡ Fuϕ + Fut
ϕt + Fux

ϕx + Fuy
ϕy + Fuz

ϕz + Futt
ϕtt + Futx

ϕtx + Futy
ϕty + Futz

ϕtz

+ Fuxx
ϕxx + Fuxy

ϕxy + Fuxz
ϕxz + Fuyy

ϕyy + Fuyz
ϕyz + Fuzz

ϕzz = 0, (2.1)

where ϕt = Dtϕ, ϕx = Dxϕ, . . . and Dt,Dx, . . . denote operators of total derivatives with
respect to t, x, . . ., e.g.

Dtf = ∂f/∂t + ut∂f/∂u + utt ∂f/∂ut + uxt∂f/∂ux + uyt∂f/∂uy

+ uzt∂f/∂uz + uttt ∂f/∂utt + utxt ∂f/∂utx + utyt ∂f/∂uty + · · · .

After collecting all terms that can be written as total derivatives, the symmetry condition (2.1)
becomes

Dt(M) + Dx(N) + Dy(L) + Dz(K) + Eu(F )ϕ = 0, (2.2)

where Eu(F ) denotes the Euler–Lagrange operator [18] applied to F,

Eu(F ) = D2
t

(
Futt

)
+ D2

x

(
Fuxx

)
+ D2

y

(
Fuyy

)
+ D2

z

(
Fuzz

)
+ DtDx

(
Futx

)
+ DtDy

(
Futy

)
+ DtDz

(
Futz

)
+ DxDy

(
Fuxy

)
+ DxDz

(
Fuxz

)
+ DyDz

(
Fuyz

)
−Dt

(
Fut

) − Dx

(
Fux

) − Dy(Fuy
) − Dz(Fuz

) + Fu (2.3)
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and M,N,L,K are defined respectively by

M = Futt
ϕt + 1

2 Futx
ϕx + 1

2 Futy
ϕy + 1

2 Futz
ϕz

+
[
Fut

− Dt

(
Futt

) − 1
2 Dx

(
Futx

) − 1
2 Dy

(
Futy

) − 1
2 Dz

(
Futz

)]
ϕ,

N = Fuxx
ϕx + 1

2 Futx
ϕt + 1

2 Fuxy
ϕy + 1

2 Fuxz
ϕz

+
[
Fux

− Dx

(
Fuxx

) − 1
2 Dt

(
Futx

) − 1
2 Dy

(
Fuxy

) − 1
2 Dz

(
Fuxz

)]
ϕ,

L = Fuyy
ϕy + 1

2 Futy
ϕt + 1

2 Fuxy
ϕx + 1

2 Fuyz
ϕz

+
[
Fuy

− Dy

(
Fuyy

) − 1
2 Dt

(
Futy

) − 1
2 Dx

(
Fuxy

) − 1
2 Dz

(
Fuyz

)]
ϕ,

K = Fuzz
ϕz + 1

2 Futz
ϕt + 1

2 Fuxz
ϕx + 1

2 Fuyz
ϕy

+
[
Fuz

− Dz

(
Fuzz

) − 1
2 Dt

(
Futz

) − 1
2 Dx

(
Fuxz

) − 1
2 Dy

(
Fuyz

)]
ϕ.

(2.4)

The determining equation, transformed to the form (2.2), takes the divergence form on solutions
of (1.1):

Dt(M) + Dx(N) + Dy(L) + Dz(K) = 0, (2.5)

if and only if the Euler–Lagrange equation

Eu(F ) = 0 (2.6)

is identically satisfied on solutions of F = 0, which is equivalent to the 4-divergence form of
equation (1.1) itself [18]:

F ≡ Dt(P ) + Dx(Q) + Dy(R) + Dz(S) = 0, (2.7)

where P,Q,R, S depend on the same set of variables as F in (1.1).

3. Two-dimensional divergence form of the symmetry condition

In order to introduce a unique potential as a consequence of a symmetry condition, we have
to convert the four-dimensional divergence on the left-hand side of the symmetry condition
(2.5) into a two-dimensional divergence, say, in the variables t and x. To do this, we present L
and K as the sum of total derivatives in t and x plus remaining terms which cannot be given in
this form:

L = Dt

(
1
2Futy

ϕ
)

+ Dx

(
1
2Fuxy

ϕ
)

+ Fuyy
ϕy + 1

2Fuyz
ϕz

+
[
Fuy

− Dy

(
Fuyy

) − Dt

(
Futy

) − Dx

(
Fuxy

) − 1
2Dz(Fuzy

)
]
ϕ,

K = Dt

(
1
2Futz

ϕ
)

+ Dx

(
1
2Fuxz

ϕ
)

+ Fuzz
ϕz + 1

2Fuyz
ϕy

+
[
Fuz

− Dz

(
Fuzz

) − Dt

(
Futz

) − Dx

(
Fuxz

) − 1
2Dy

(
Fuyz

)]
ϕ.

(3.1)

Using (3.1) in (2.5) together with definitions (2.4) and collecting terms with the total derivatives
with respect to t and x, we convert (2.5) to the form

Dt(M̄) − Dx(N̄) + Fuyy
ϕyy + Fuyz

ϕyz + Fuzz
ϕzz

+
[
Fuy

− Dt

(
Futy

) − Dx

(
Fuxy

)]
ϕy +

[
Fuz

− Dt

(
Futz

) − Dx

(
Fuxz

)]
ϕz

+
{
Dy

[
Fuy

− Dy

(
Fuyy

) − Dt

(
Futy

) − Dx

(
Fuxy

)]
+ Dz

[
Fuz

− Dz

(
Fuzz

) − Dt

(
Futz

) − Dx

(
Fuxz

)] − DyDz

(
Fuyz

)}
ϕ = 0, (3.2)

where M̄ and N̄ are defined respectively by

M̄ = Futt
ϕt + 1

2Futx
ϕx + Futy

ϕy + Futz
ϕz +

[
Fut

− Dt

(
Futt

) − 1
2Dx

(
Futx

)]
ϕ,

N̄ = − {
Fuxx

ϕx + 1
2Futx

ϕt + Fuxy
ϕy + Fuxz

ϕz +
[
Fux

− Dx

(
Fuxx

) − 1
2Dt

(
Futx

)]
ϕ
}
.

(3.3)
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It is clear that in order to have the symmetry condition (3.2) to be a two-dimensional divergence
in the variables t and x, the coefficients of all the terms not included in the total derivatives Dt

and Dx should vanish on solutions of (1.1):

Fuyy
= Fuyz

= Fuzz
= 0, (3.4)

Fuy
− Dt

(
Futy

) − Dx

(
Fuxy

) = 0, Fuz
− Dt

(
Futz

) − Dx

(
Fuxz

) = 0 (3.5)

whereas, as a consequence of (3.4) and (3.5), the coefficient of ϕ in (3.2) vanishes identically
and the symmetry condition (3.2) becomes

Dt(M̄) = Dx(N̄). (3.6)

Note that the symmetry condition and therefore all equations (3.2), (3.5) and (3.6) should be
satisfied not identically but only on solutions of the original PDE (1.1) and hence they should
be (differential) consequences of F = 0.

Condition (3.6) is equivalent to the local existence of the potential ψ defined by

ψt = N̂ = N̄ + �t, ψx = M̂ = M̄ + �x, � = ωϕ, (3.7)

where ω may depend on t, x, y, z, u and the first and second derivatives of u. Here the terms
with the derivatives of � are added in order to have the most general definition of the potential
ψ . Now, the symmetry condition (3.2) can be written as

Dt(M̂) = Dx(N̂) (3.8)

on solutions of F = 0.

4. Existence conditions for partner symmetries

Our second requirement is that the potential ψ should also be a symmetry of the PDE (1.1),
i.e. a partner symmetry for the original symmetry ϕ, so that (3.7) becomes a recursion relation
for symmetries. Then the symmetry condition in the two-dimensional divergence form (3.8)
with ϕ replaced by ψ , defined by (3.7), should be satisfied on solutions of equation (1.1),

Dt(M̃) − Dx(Ñ) = F̂ , (4.1)

where M̃ and Ñ are obtained from M̄ and N̄ respectively by replacing ϕ with ψ in (3.3),

M̃ = Futt
ψt + 1

2Futx
ψx + Futy

ψy + Futz
ψz +

[
Fut

− Dt

(
Futt

) − 1
2Dx

(
Futx

)]
ψ,

Ñ = − {
Fuxx

ψx + 1
2Futx

ψt + Fuxy
ψy + Fuxz

ψz +
[
Fux

− Dx

(
Fuxx

) − 1
2Dt

(
Futx

)]
ψ

}
.

(4.2)

The term F̂ has the form

F̂ = μDt(F ) + νDx(F ) + ρDy(F ) + λDz(F ) + σF (4.3)

and it accounts for the fact that equation (4.1) should be satisfied only on solutions of (1.1) (a
consequence of proposition 2.10 in [18], similar to formula (2.26) therein).

By using in (4.1) definitions (4.2) of M̃ and Ñ and eliminating ψt and ψx in compliance
with definition (3.7) of ψ , the symmetry condition (4.1) becomes

Dt

{
Futt

[N̄ + Dt(ωϕ)] + 1
2Futx

[M̄ + Dx(ωϕ)]
}

+ Dx

{
Fuxx

[M̄ + Dx(ωϕ)] + 1
2Futx

[
N̄ + Dt(ωϕ)

]}
+

[
Futy

Dy + Futz
Dz + Fut

− Dt

(
Futt

) − 1
2Dx

(
Futx

)]
[N̄ + Dt(ωϕ)]

+
[
Fuxy

Dy + Fuxz
Dz + Fux

− Dx

(
Fuxx

) − 1
2Dt

(
Futx

)]
[M̄ + Dx(ωϕ)]

+
[
Dt

(
Futy

)
+ Dx

(
Fuxy

)]
ψy +

[
Dt

(
Futz

)
+ Dx

(
Fuxz

)]
ψz

+
[
Dt

(
Fut

) − D2
t

(
Fut t

)
+ Dx

(
Fux

) − D2
x

(
Fuxx

) − DtDx

(
Futx

)]
ψ = F̂ , (4.4)
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where M̄ and N̄ are defined in (3.3). Terms with ψy , ψz and ψ in (4.4) cannot be balanced by
any other terms and therefore they should vanish separately on solutions of (1.1) yielding

Dt

(
Futy

)
+ Dx

(
Fuxy

) = F̂ y, Dt

(
Futz

)
+ Dx

(
Fuxz

) = F̂ z, (4.5)

Dt

(
Fut

)
+ Dx

(
Fux

) − D2
t

(
Futt

) − D2
x

(
Fuxx

) − DtDx

(
Futx

) = F̂ 0 (4.6)

respectively, where the terms F̂ y , F̂ z and F̂ 0 are of the same form as (4.3) but with different
coefficients. Equations (4.5) together with (3.5) and equation (4.6) together with (2.6), where
(3.5) and (2.6) should be satisfied only on solutions of (1.1), imply

Fuy
= 0, Fuz

= 0, Fu = 0. (4.7)

In all other terms in (4.4), we have replaced ψt and ψx by expressions (3.7) and M̄ , N̄ should be
further replaced with expressions (3.3). We note that, due to definition (3.7) of the potential ψ

and its consequence (3.8) (equivalent to (3.6)), ϕ satisfies the symmetry condition (2.1), which
cancels all the terms proportional to ω in (4.4). It is easy to check that all other terms in (4.4)
with second derivatives of ϕ are canceled identically. The remaining terms are proportional to
ϕt , ϕx , ϕy , ϕz and ϕ, so that these five groups of terms should vanish separately on solutions
of the equation F = 0 to give the following five equations respectively:

Dx

(
Futt

Fuxx

) − 1
4 Dx

(
F 2

utx

)
+ Fuxy

Dy

(
Futt

)
+ Fuxz

Dz

(
Futt

)
− 1

2

[
Futy

Dy

(
Futx

)
+ Futz

Dz

(
Futx

)]
+ 2Futt

Dt (ω) + Futx
Dx(ω)

+ Futy
Dy(ω) + Futz

Dz(ω) = F̂1, (4.8)

−{
Dt

(
Futt

Fuxx

) − 1
4 Dt

(
F 2

utx

)
+ Futy

Dy

(
Fuxx

)
+ Futz

Dz

(
Fuxx

)
− 1

2

[
Fuxy

Dy

(
Futx

)
+ Fuxz

Dz

(
Futx

)] − 2Fuxx
Dx(ω) − Futx

Dt (ω)

−Fuxy
Dy(ω) − Fuxz

Dz(ω)
} = F̂2, (4.9)

Dx

(
Futy

Fuxx

) − 1
2 Dx(Futx

Fuxy
) − Dt(Fuxy

Futt
) + 1

2 Dt(Futx
Futy

)

+ Fuxy
Dy

(
Futy

)
+ Fuxz

Dz

(
Futy

) − Futy
Dy

(
Fuxy

) − Futz
Dz

(
Fuxy

)
+ Futy

Dt (ω) + Fuxy
Dx(ω) = F̂3, (4.10)

Dx(Futz
Fuxx

) − 1
2 Dx(Futx

Fuxz
) − Dt(Fuxz

Futt
) + 1

2 Dt(Futx
Futz

)

+ Fuxy
Dy

(
Futz

)
+ Fuxz

Dz

(
Futz

) − Futy
Dy

(
Fuxz

) − Futz
Dz

(
Fuxz

)
+ Futz

Dt (ω) + Fuxz
Dx(ω) = F̂4, (4.11)

Fut
B − Fux

A + Futt
Dt (B) − Fuxx

Dx(A) + 1
2 Futx

[
Dx(B) − Dt(A)

]
+ Futy

Dy(B) + Futz
Dz(B) − Fuxy

Dy(A) − Fuxz
Dz(A) + Â(ω) = F̂0, (4.12)

where

A = Dt

(
Futt

)
+ 1

2 Dx

(
Futx

) − Fut
, B = Dx

(
Fuxx

)
+ 1

2 Dt

(
Futx

) − Fux
(4.13)

and Â is the operator of the symmetry condition (2.1). Here the terms F̂i , of the form (4.3)
but with different coefficients, account for the fact that the equations should be satisfied only
on solutions of (1.1). The derivation of equations (4.8), (4.9), (4.10), (4.11) and (4.12) from
(4.4) is lengthy but straightforward.

We note that in the notation (4.13) equation (4.6) simplifies to

Dt(A) + Dx(B) = F̂ . (4.14)
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5. Equations that admit partner symmetries and recursion relation for symmetries

We proceed now to solve the existence conditions for partner symmetries (4.5), (4.8), (4.9),
(4.10), (4.11), (4.12) and (4.14) for the unknown left-hand side F of equation (1.1) and ω in
definition (3.7) of the potential ψ . We split these equations with respect to third derivatives
of u and obtain over-determined sets of equations which can be easily solved. Our strategy is
to choose the function ω and the coefficients μ, ν, ρ, λ, σ in the terms F̂ of the form (4.3) in
such a way as to have minimum restrictions on the form F of equation (1.1).

We start with equations (4.5), since they do not contain ω. Our strategy results in vanishing
of μ, ν, ρ, λ and σ in F̂ y and F̂ z that implies the linear dependence of F on uty, uxy, utz and
uxz, so that the solution of equations (4.5) has the form

F = a1(y, z)(utyuxz − utzuxy) + a2(utxuty − uttuxy) + a3(utyuxx − utxuxy)

+ a4(utxutz − uttuxz) + a5(utzuxx − utxuxz) + b1uxy + b2uty

+ b3uxz + b4utz + g3(utt , utx, uxx, ut , ux, t, x, y, z), (5.1)

where the coefficients a2, a3, a4, a5, b1, b2, b3 and b4 are functions of ut , ux , t, x, y, z that
satisfy the following equations:

a3ut
= a2ux

, b2ut
= a2x, b1ux

= −a3t , b2t = −b1x, a3x = b1ut
+ b2ux

+ a2t,

a5ut
= a4ux

, b4ut
= a4x, b3ux

= −a5t , b4t = −b3x, a5x = b3ut
+ b4ux

+ a4t .
(5.2)

To simplify the analysis, from now on we assume that all the coefficients in (5.1) are constants,
so that all equations (5.2) are identically satisfied, and that g3 depends only on the second
derivatives utt , utx, uxx . As a consequence, the left-hand side F of our equation (1.1) depends
only on second derivatives of u, so that it takes the form (1.2).

With these restrictions, we substitute expression (5.1) for F in the remaining six
equations (4.8), (4.9), (4.10), (4.11), (4.12) and (4.14). The resulting equations are split
in third derivatives of u into over-determined sets of equations, where we choose the function
ω and the coefficients μ, ν, ρ, λ, σ in the terms of the form (4.3) in such a way as to obtain
minimum restrictions on the form of F. It turns out that all these six equations determine only
the form of the function g3:

g3(utt , utx, uxx) = a6
(
uttuxx − u2

tx

)
+ b5utt + 2b6utx + b7uxx + b0, (5.3)

so that equation (1.1) becomes

F = a1(utyuxz − utzuxy) + a2(utxuty − uttuxy) + a3(utyuxx − utxuxy)

+ a4(utxutz − uttuxz) + a5(utzuxx − utxuxz) + a6
(
uttuxx − u2

tx

)
+ b1uxy + b2uty + b3uxz + b4utz + b5utt + 2b6utx + b7uxx + b0 = 0 (5.4)

together with the following solution for ω:

ω = − 1
2 (a2uty + a3uxy + a4utz + a5uxz) + ω0, (5.5)

where all the coefficients in (5.4) and (5.5) are now constants. Using (5.5) in equations (3.7),
that define the symmetry potential ψ in terms of the symmetry ϕ, we obtain the recursion
relation between partner symmetries of equation (5.4):

ψt = −(a2uty + a4utz − a6utx + b6 − ω0)ϕt − (a3uty + a5utz + a6utt + b7)ϕx

+ (a1utz + a2utt + a3utx − b1)ϕy + (−a1uty + a4utt + a5utx − b3)ϕz,

ψx = −(a2uxy + a4uxz − a6uxx − b5)ϕt − (a3uxy + a5uxz + a6utx − b6 − ω0)ϕx

+ (a1uxz + a2utx + a3uxx + b2)ϕy + (−a1uxy + a4utx + a5uxx + b4)ϕz.

(5.6)
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Indeed, by construction, both ϕ and ψ satisfy the symmetry condition (2.1) in the divergence
form (3.8) and (4.1) respectively, on solutions of (1.2), and hence the transformation (5.6)
maps any symmetry ϕ of equation (5.4) again into its symmetry ψ .

6. Canonical forms of PDEs that admit partner symmetries

Due to the random choice of original variables, both the forms of equation (5.4), that admits
partner symmetries, and recursion relation (5.6) contain false generality. Therefore, we
consider here the changes of variables that transform equation (5.4) to simple canonical forms
and simplify the corresponding recursion relation. This will also make up for our casual choice
of variables t and x for the two-dimensional divergence form.

Case I: a1 �= 0. In this case we can make a1 = 1 by dividing (5.4) over a1. Transform
equation (5.4) to the new variables

t̃ = t + a4y − a2z, x̃ = x + a5y − a3z, ỹ = y, z̃ = z, (6.1)

skip tilde in the result and introduce the following notation:

� = a3a4 − a2a5 + a6, A = a4b2 − a2b4 + b5, B = a5b1 − a3b3 + b7,

C = a4b1 + a5b2 − a2b3 − a3b4 + 2b6, D = b1b4 − b2b3 + b0.
(6.2)

The transformed equation (5.4) becomes

F = utyuxz − utzuxy + �
(
uttuxx − u2

tx

)
+ Autt + Buxx + Cutx

+ b1uxy + b2uty + b3uxz + b4utz + b0 = 0. (6.3)

Consider here the following subcases.

Subcase Ia: � = 0. Then, with the change of the unknown

u = v + b1tz + b4xy − b2xz − b3ty, (6.4)

equation (6.3) becomes

vtyvxz − vtzvxy + Avtt + Bvxx + Cvtx + D = 0. (6.5)

Subcase Ia1: A = B = C = D = 0. Then equation (6.5) reduces to the homogeneous version
of the first heavenly equation of Plebañski:

utyuxz − utzuxy = 0, (6.6)

where we have restored the original notation u for the unknown.

Subcase Ia2: A = B = C = 0, D �= 0. Then we can set D = −1, and equation (6.5)
becomes the first heavenly equation of Plebañski:

utyuxz − utzuxy = 1, (6.7)

where we have again replaced v by u. In cases Ia1 and Ia2, the recursion relation for symmetries
(5.6) becomes

ψt = ω0ϕt + utzϕy − utyϕz, ψx = ω0ϕx + uxzϕy − uxyϕz. (6.8)

Subcase Ia3: (A,B,C) �= (0, 0, 0). Then we can always make D �= 0 by substituting

v = ṽ + kt2 + lx2 + mxt (6.9)

9
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into (6.5). Applying the Legendre transformation

t = wp, x = wq, v = w − pwp − qwq, p = −vt , q = −vx (6.10)

to equation (6.5), we obtain

wpywqz − wpzwqy + Awqq + Bwpp − Cwpq − D
(
wppwqq − w2

pq

) = 0, (6.11)

where the new unknown w = w(p, q, y, z) is the Legendre transform of v. Finally, by the
change of the unknown

w = u +
1

2D
(Ap2 + Bq2 + Cpq), (6.12)

equation (6.11) takes the form

upyuqz − upzuqy − D
(
uppuqq − u2

pq

)
+

1

4D
(4AB − C2) = 0. (6.13)

Since D �= 0, we can always make D = 1, by the choice of the constants k, l and m in the
transformation (6.9), and the nonvanishing constant term to be ±1, by an appropriate scaling
of u, so that equation (6.13) takes the canonical form

utyuxz − utzuxy + uttuxx − u2
tx = ε, (6.14)

where ε = ±1 and p, q are replaced by t, x respectively. We call (6.14) the mixed
heavenly equation. It is interesting to note that equation (6.14) is form-invariant under
the Legendre transformation (6.10) for ε = 1 and under the transformation (6.10), combined
with the reflection in t or x, for ε = −1. The homogeneous version of the mixed heavenly
equation (6.14), with ε = 0, is transformed to the first heavenly equation under the Legendre
transformation (6.10). The recursion relation (5.6) for symmetries of equation (6.14) becomes

ψt = (utx + ω0)ϕt − uttϕx + utzϕy − utyϕz,

ψx = uxxϕt − (utx − ω0)ϕx + uxzϕy − uxyϕz.
(6.15)

Recently we became aware of the relation of the mixed heavenly equation to Husain’s heavenly
equation (at ε = +1) [13, 14] related to the chiral model approach to self-dual gravity:

vtzvpy − vtyvpz + vtt + εvpp = 0. (6.16)

Equation (6.16) can be obtained from the mixed heavenly equation by the partial Legendre
transformation in x:

x = vp, u = v − pvp, p = −ux, v(t, p, y, z) = u − xux. (6.17)

We note that (6.16) could also be obtained as a canonical equation in subcase Ia3 of the
general equation (5.4) with the replacement u �→ v, x �→ p with the following choice of the
coefficients in (5.4): a1 = −1, b5 = 1, b7 = ε and all other coefficients vanishing. Then from
(5.6) with the same change of notation we obtain the recursion between partner symmetries
for equation (6.16):

ψt = vtyϕz − vtzϕy − εϕp + ω0ϕt , ψp = vpyϕz − vpzϕy + ϕt + ω0ϕp. (6.18)

Subcase Ib: � �= 0. In this case, after applying the transformation (6.4), equation (6.3) takes
the form (6.11) for the unknown v plus the constant term D = b1b4 − b2b3 + b0:

vtyvxz − vtzvxy + �
(
vtt vxx − v2

tx

)
+ Avtt + Bvxx + Cvtx + D = 0. (6.19)

Then the transformation similar to (6.12):

v = u − 1

2�
(Ax2 + Bt2 − Ctx), (6.20)
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being applied to (6.19), results in the same equation (6.14), after setting � = 1 by an
appropriate scaling of t and y or x and z.

Case II: a1 = 0.

Subcase IIa: a2 = a3 = a4 = a5 = 0, a6 �= 0. Then we can set a6 = 1 and equation (5.4)
becomes

uttuxx − u2
tx + b5utt + 2b6utx + b7uxx + b1uxy + b2uty + b3uxz + b4utz + b0 = 0. (6.21)

The substitution

u = v − 1
2 (b5x

2 + b7t
2) + b6tx (6.22)

transforms equation (6.21) to the form

vtt vxx − v2
tx + b1vxy + b2vty + b3vxz + b4vtz + b0 + b2

6 − b5b7 = 0. (6.23)

We assume that (b1, b2, b3, b4) �= (0, 0, 0, 0) since otherwise equation (6.23) determines v

that depends only on two variables. Let, say, b1 �= 0. Then, under the substitution

v = w −
(
b2

6 − b5b7 + b0
)

b1
xy, (6.24)

equation (6.23) becomes

wttwxx − w2
tx + b1wxy + b2wty + b3wxz + b4wtz = 0. (6.25)

We consider only the case when (b1, b2) �= (0, 0) and (b3, b4) �= (0, 0), since otherwise
equation (6.25) would determine a function of less than four variables.

Subcase IIa1: b1b4 − b2b3 �= 0. Then by the change of variables

y ′ = ay + bz, z′ = cy + dz (6.26)

with the appropriate choice of a, b, c, d, equation (6.25) takes the form of the second heavenly
equation of Plebañski:

uttuxx − u2
tx + uxy + utz = 0, (6.27)

where we have again denoted the unknown by u. Note that in case IIa1 the transformation
(6.26) has the nonvanishing determinant ad − bc �= 0. The recursion (5.6) for symmetries of
(6.27) takes the form

ψt = (utx + ω0)ϕt − uttϕx − ϕy, ψx = uxxϕt − (utx − ω0)ϕx + ϕz, (6.28)

which at ω0 = 0 coincides, up to the change ψ �→ −ψ , with our previous result [6].

Subcase IIa2: b1b4 − b2b3 = 0. Then, by choosing a certain linear combination of y and z,
we obtain the equation which determines a function of only three variables.

Subcase IIb: a1 = a2 = a3 = a4 = a5 = a6 = 0. Then (5.4) reduces to the linear equation

b5utt + 2b6utx + b7uxx + b1uxy + b2uty + b3uxz + b4utz + b0 = 0. (6.29)

The recursion (5.6) for symmetries of (6.29) becomes

ψt = −(b6 − ω0)ϕt − b7ϕx − b1ϕy − b3ϕz, ψx = b5ϕt + (b6 + ω0)ϕx + b2ϕy + b4ϕz. (6.30)

Subcase IIc: a1 = 0, (a2, a3, a4, a5) �= (0, 0, 0, 0). Equation (5.4) with a1 = 0 by an
appropriate linear transformation of independent variables together with a shift of the unknown
by a quadratic form of independent variables, followed by the Legendre transformation in t
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and x, in the non-degenerate case, when the equation determines a function of four variables,
takes the canonical form

utxuty − uttuxy + autz + buxz + cuxx = 0, (6.31)

up to a possible change of notation for independent variables x �→ t and/or z �→ y. We call
this equation asymmetric heavenly equation. At b = 0 it becomes the so-called evolution form
of the second heavenly equation [15, 19, 20].

The recursion relation (5.6) for symmetries of (6.31) takes the form

ψt = −(uty − ω0)ϕt − cϕx + uttϕy − bϕz, ψx = −uxyϕt + ω0ϕx + utxϕy + aϕz. (6.32)

7. Point and contact symmetries of canonical equations

In the method of partner symmetries, we consider a nonlocal symmetry with the characteristic
η̂ = ϕ̃ − Rϕ, where ϕ̃ is any point symmetry of our equation and R is the recursion operator
determined by recursion relations (5.6), generating a nonlocal symmetry ψ = Rϕ from a
point symmetry ϕ. We search for solutions invariant with respect to a nonlocal symmetry η̂,
determined by the condition ϕ̃−Rϕ = 0 [3], so that we can obtain this invariance condition by
formally replacing ψ by a point symmetry ϕ̃ : ψ = ϕ̃ in the recursion relations (5.6). This does
not mean symmetry reduction, so that generically these solutions depend on all four variables
and so they are still noninvariant solutions in the usual sense. Contact symmetries can also be
used for ϕ and/or ϕ̃. Therefore, in this section we present all point and contact symmetries of
the canonical equations, since any of them can be chosen for ϕ̃ and serve as an input for ϕ into
(5.6). All the point and contact symmetries were computed by using the programs ‘LIEPDE’
and ‘CRACK’ by Wolf [21] run in the computer algebra system ‘REDUCE 3.8’.

The homogeneous version (6.6) of the first heavenly equation of Plebañski, in case Ia1,
has point symmetries with the following set of generators:

X1 = a(y, z)∂y, X2 = b(y, z)∂z, X3 = c(t, x)∂t , X4 = d(t, x)∂x,

X5 = f (y, z)∂u X6 = g(t, x)∂u, X7 = u∂u,
(7.1)

where a, b, c, d, f and g are arbitrary functions of two specified variables. From now on, all
the functions, involved in symmetry generators, are either arbitrary or satisfy certain linear
equations.

Nontrivial contact symmetries of (6.6), that are not point symmetries, have the following
generating functions [12]:

W1 = a(t, x, ut , ux), W2 = b(y, z, uy, uz) (7.2)

that coincide with the symmetry characteristics.
The first heavenly equation of Plebañski (6.7), in case Ia2, has only point symmetries

with the following set of generators:

X1 = a(y, z)∂u, X2 = b(t, x)∂u, X3 = cy(y, z)∂z − cz(y, z)∂y,

X4 = dt (t, x)∂x − dx(t, x)∂t , X5 = 2x∂x + u∂u, X6 = z∂z − x∂x.
(7.3)

The mixed heavenly equation (6.14), in case Ia3, has point symmetries with the following
set of generators:

X1 = t∂u, X2 = t∂t − x∂x, X3 = t∂t + z∂z + u∂u, X4 = ∂x,

X5 = t∂x, X6 = ∂t , X7 = x∂t , X8 = x∂u, X9 = a(y, z)∂u,

X10 = by(y, z)∂z − bz(y, z)∂y,

(7.4)

the same for ε = ±1.
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Nontrivial contact symmetries of (6.14) are determined by the generating function

W = f (ut , ux, t, x), (7.5)

where the function f is an arbitrary solution of the linear equations

futut
+ εfxx = 0, fuxux

+ εftt = 0, futux
= εftx, fut t + fuxx = 0. (7.6)

The homogeneous version of the mixed heavenly equation

utyuxz − utzuxy + uttuxx − u2
tx = 0 (7.7)

has point symmetries with the following generators:

X1 = a(y, z)∂u, X2 = by(y, z)∂z − bz(y, z)∂y, X3 = x∂u,

X4 = x∂t , X5 = t∂t + z∂z, X6 = ∂t , X7 = t∂x, X8 = ∂x,

X9 = u∂u, X10 = x∂x + z∂z, X11 = t∂u.

(7.8)

Nontrivial contact symmetries of (7.7) have the generating functions

W1 = xfut
(ut , ux) − tfux

(ut , ux), W2 = g(ut , ux), (7.9)

where f and g are arbitrary functions of ut , ux .
Lie point symmetries of (6.16), which at ε = +1 is Husain’s equation, have the following

generators:

X1 = y∂y + v∂v, X2 = az(y, z)∂y − ay(y, z)∂z, X3 = b(y, z)∂v,

X4 = ct (t, p)∂t − εcp(t, p)∂p + d(t, p)∂v,
(7.10)

where ε = ±1 is the coefficient of the term vpp in (6.16) and c(t, p) and d(t, p) should satisfy
the equations

ctt (t, p) + εcpp(t, p) = 0, dtt (t, p) + εdpp(t, p) = 0.

Nontrivial Lie contact symmetries of (6.16) are determined by the generating function
W = W(t, p, vt , vp) which should satisfy the equations

Wvt t = Wvpp, Wvtp + εWvpt = 0, Wvtvt
+ εWvpvp

= 0, Wtt + εWpp = 0. (7.11)

The second heavenly equation (6.27), in case IIa1, has only point symmetries with the set
of generators

X1 = a(y, z)∂u, X2 = (xbz(y, z) − tby(y, z))∂u, X3 = t∂t + y∂y + u∂u,

X4 = x∂x − y∂y + 2u∂u, X5 = 2y∂t − tx∂u,

X6 = (tcyz(y, z) − xczz(y, z))∂t + (tcyy(y, z) − xcyz(y, z))∂x + cz(y, z)∂y

− cy(y, z)∂z + 1
2

(
tx2cyzz(y, z) + 1

3 t3cyyy(y, z) − t2xcyyz(y, z) − 1
3x3czzz(y, z)

)
∂u,

X7 = dz(y, z)∂t + dy(y, z)∂x +
(

1
2 t2dyy(y, z) − txdyz(y, z) + 1

2x2dzz(y, z)
)
∂u.

(7.12)

These symmetries had been already presented in our paper [6] together with the commutator
table and the same symmetries were also obtained later in the paper [22] by using a different
computer program ‘LIE’. We reproduce these symmetries here to make the paper self-
contained.

We skip case IIb of the linear equation (6.29), since we concentrate here on nonlinear
equations, so we proceed to the asymmetric heavenly equation (6.31) in case IIc. The point
symmetries of (6.31) have the following generators:

X1 = A(y, z)∂u, X2 = y∂y + u∂u, X3 = By(y, z)∂t + (bt − ax)Bz(y, z)∂u (7.13)
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plus one more lengthy generator

X4 = (tf ′′(z) + bkt − hx(x, z))∂t +

(
c

b
f ′(z) + kθ

)
∂x + (g′(z)− yf ′′(z)− 2bky)∂y + f ′(z)∂z

+

{(
b

2
t2 − atx

)
(yf ′′′(z) − g′′(z)) + ayhz(x, z) + d(x, z) − 2ackty

}
∂u, (7.14)

where f (z) and g(z) are arbitrary functions, θ = bx − cz and the functions d(x, z) and h(x, z)
are defined as follows:

d(x, z) = �(θ) − a2

2b2
[b2x2g′′(z) − 2bcxg′(z) + 2c2g(z)], (7.15)

h(x, z) = �(θ) +
ack

2b2
(2zθ + cz2) +

a

2b3
[b2x2f ′′(z) − 2bcxf ′(z) + 2c2f (z)] (7.16)

and �(θ) is an arbitrary function.
Contact symmetries of (6.31) are determined by the following generating function:

W = �(α, θ) +

[
β

b
gyz(y, z) − hy(y, z)

b
− (k − l)

b2
(acz + b2t)

]
ut +

gyy(y, z)

2b
u2

t

− (k − l)θ

b
ux + (gz(y, z) − 2ly)uy − gy(y, z)uz + 2ku +

β2

2b
gzz(y, z) − cθ

b2
gy(y, z)

− a2c

b2
xgz(y, z) +

a2c2

b3
g − β

b
hz(y, z) +

ac

b2
h − a2c

b3
(k − l)yθ. (7.17)

For symmetry generators of point transformations in the geometric form

X = ξ t∂t + ξx∂x + ξy∂y + ξz∂z + η∂u (7.18)

the symmetry characteristic [18] is defined as

η̂ = η − ξ tut − ξxux − ξyuy − ξzuz. (7.19)

For each of the canonical equations, characteristics η̂ of point symmetries or generating
functions W of contact symmetries can be used for ϕ and ψ in the recursion relations, as was
explained at the beginning of this section. Then the recursions become differential constraints
that determine particular, generically noninvariant, solutions of these equations.

8. Lift from invariant to noninvariant solutions of the mixed heavenly equation

Here we demonstrate the application of partner symmetries for obtaining noninvariant solutions
of canonical PDEs and, in particular, a lift from invariant to noninvariant solutions. We choose
mixed heavenly equation (6.14) as an example, possessing the recursion for symmetries (6.15),
where we set ω0 = 0. Equation (6.14) admits the obvious translational symmetry with the
generator X = ∂x + ∂z.

Solutions, invariant under this symmetry, have the form u = u(s, t, y), where s = x − z,
since they do not change under the simultaneous shift in x and z. Then u satisfies the reduced
equation

utsusy − utyuss + uttuss − u2
ts = ε, (8.1)

obtained from (6.14) by the symmetry reduction. Under the Legendre transformation

r = us, v(r, t, y) = u − sus, s = −vr, u = v − rvr (8.2)
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equation (8.1) is linearized in the form

vtt + εvrr − vty = 0. (8.3)

By using partner symmetries, we shall show that solutions of the linear equation (8.3), i.e.
invariant solutions of Legendre transformed mixed heavenly equation, being written in certain
new coordinates, can be lifted up to noninvariant solutions of the latter equation.

As was explained at the beginning of section 7, we formally replace ψ , that is generated
from a point symmetry ϕ in the recursion relations (6.15) (with ω0 = 0), by a point symmetry
ϕ̃. Here we choose both ϕ and ψ = ϕ̃ to be the indicated above combination of translations
in x and z with the characteristic ψ = ϕ = ux + uz, so that (6.15) becomes

uxx + uxz = utzuxx − utxuxz + uxzuyz − uxyuzz, (8.4)

utx + utz = utx(utx + utz) − utt (uxx + uxz) + utz(uxy + uyz) − uty(uxz + uzz). (8.5)

With the aid of (6.14), equation (8.5) takes the form

utx + utz = utxutz − uttuxz + utzuyz − utyuzz − ε. (8.6)

After the Legendre transformation

p = ux, q = uz, v(p, q, t, y) = u − xux − zuz, x = −vp, z = −vq (8.7)

equations (8.4) and (8.6) take the form

vpq = vqq + vtq − vpy, (8.8)

vpq(vtq − εvpq + vtt ) = vpp(−εvqq + vtq + vty), (8.9)

where equation (8.8) was used in the Legendre transform of (8.6) to arrive at (8.9).
Equation (8.9) can be set into a linear form

λvpq = vtq − εvqq + vty, (8.10)

λvpp = vtq − εvpq + vtt (8.11)

by introducing an extra unknown λ depending on all the variables. Solving algebraically
the system of the three linear equations (8.8), (8.10) and (8.11) with respect to the principal
derivatives vty, vtq and vpy in terms of the remaining parametric derivatives in the form

vty = ε(vqq − vpq) + λ(vpq − vpp) + vtt , (8.12)

vtq = εvpq + λvpp − vtt , (8.13)

vpy = (ε − 1)vpq + λvpp + vqq − vtt , (8.14)

we easily check that all cross derivatives of the left-hand sides coincide as a consequence of
these equations, so that this system of PDEs does not have nontrivial integrability conditions.
The mixed heavenly equation (6.14) after the Legendre transformation (8.7) becomes

vtqvpy − vpqvty + vtt vqq − v2
tq + ε

(
vppvqq − v2

pq

) = 0. (8.15)

We note that the mixed heavenly equation does not need to be form-invariant under the Leg-
endre transformation (8.7) because it is performed with respect to different variables than the
Legendre transformation (6.10). The Legendre transformed mixed heavenly equation (8.15)
obviously constitutes another particular case of our general equation (5.4), up to a change
of notation of the dependent and independent variables. The linear equations (8.12), (8.13),
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(8.14) together with (8.15) imply that λ = −ε as far as vppvqq − v2
pq �= 0. Then the Legendre

transformed mixed heavenly equation (8.15) becomes an algebraic consequence of these three
linear PDEs with constant coefficients.

In the case when ε = −1 and hence λ = 1, equations (8.8) and (8.10) imply

vty + vpy = 0, (8.16)

which can be integrated to yield the linear first-order equation

vt + vp = C(t, p, q). (8.17)

This obviously leads to the dependence of v on the characteristic combination t − p and
thus determines invariant solutions. In this case we have a symmetry reduction and no lift to
noninvariant solutions.

In the case when ε = 1 and hence λ = −1, equations (8.8), (8.10) and (8.11) do not
imply any linear first-order consequences, so there is no symmetry reduction of the number
of variables in this case and invariant solutions generically do not arise. Under the change of
variables (q, p, t) �→ (q, η = p + t, ξ = p − t), equation (8.13) takes the form of the linear
reduced equation (8.3) but written in the new variables η, ξ and q:

vηη + vξξ − vξq = 0 (8.18)

and containing the fourth argument y of the unknown v as a parameter. Any solution of this
linear equation depends on the three variables η, ξ and q with the ‘constants’ of integration
depending on the fourth variable y. Certain appropriate linearly independent combinations of
two other equations (8.12) and (8.14), with the use of (8.18), in the new variables take the
form

vξq − vηq + vξy = 0, (8.19)

vξq + vηq − vqq + vηy = 0. (8.20)

These two equations determine the y-dependence of the ‘constants’ of integration in the solution
of (8.18) and hence we obtain the lift of invariant solutions of the Legendre transformed mixed
heavenly equation (8.15) to noninvariant solutions of this equation.

It is easy to obtain an infinite set of exact solutions to linear equations with constant
coefficients. Indeed, we can try the exponential dependence of v on η:

v = exp(aη + b(y))f (ξ, q, y),

so that (8.18) becomes

fξξ − fξq + a2f = 0. (8.21)

For the solution of this equation we can try the following ansatz:

f = A cos(αξ + βq + θ(y)) + B sin (αξ + βq + θ(y)). (8.22)

Expression (8.22) satisfies (8.21) only if a = ±α
√

α − β, so that

v = exp(±α
√

α − β η + b(y))[A cos (αξ + βq + θ(y)) + B sin(αξ + βq + θ(y))]. (8.23)

Expression (8.23) satisfies (8.19) if

θ(y) = −βy, b(y) = ±β

√
α − β

α
y

so that (8.23) finally becomes

v = exp

(
±

√
α(α − β)

(
η +

β

α
y

))
×{A cos[αξ + β(q − y)] + B sin [αξ + β(q − y)]}. (8.24)
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Surprisingly enough, this expression satisfies identically the third equation (8.20), though it is
linearly independent of the other two equations.

Any linear combination of the solutions of the form (8.24) is again a solution of the three
linear equations (8.18) (8.19) and (8.20) and hence, with η = p + t, ξ = p − t , it will satisfy
the nonlinear Legendre transformed mixed heavenly equation (8.15) at ε = 1, since it is a
consequence of these linear equations. In the case of a discrete spectrum, we can choose, for
example, the following linear combination:

v =
∑

i

exp

(
±

√
αi(αi − βi)

(
η +

βi

αi

y

))
{Ai cos [αiξ + βi(q − y)]

+ Bi sin[αiξ + βi(q − y)]}, (8.25)

where αi , βi , Ai and Bi stand for arbitrary constants. This is an example of a solution to (8.15),
which is obviously noninvariant because it clearly depends on four independent combinations
of the variables η, ξ, q and y. For the case of a continuous spectrum, the sum in (8.25) should
be replaced by an integral.

There is also a class of polynomial solutions. We start with the ansatz

v = A(η, ξ, y)
q2

2
+ B(η, ξ, y)q + C(η, ξ, y). (8.26)

Expression (8.26) will satisfy linear equations (8.18) (8.19) and (8.20) if the coefficients have
the form

A(η, ξ, y) = 3[4g(η2 − ξ 2) + 2hηξ + ky2],

B(η, ξ, y) = 3{[(4g + h)(ξ 2 − η2) + 2(4g − h)ηξ ]y + hηξ 2 − 4gη2ξ + μ(ξ 2 − η2)},
C(η, ξ, y) = kηy3 + 3[h(η2 − ξ 2) − 8gηξ ]y2 + f (ξη3 − ηξ 3) + (hη + μ)ξ 3 − gη4

+ [hξ 3 + 8gη3 + 12gη2ξ − 3(4g + h)ηξ 2 + 3μ(η2 − ξ 2) − 6μηξ ]y,

(8.27)

where f , g, h, k and μ are arbitrary constants.
For solutions independent of η we obtain, for example, v = (ξ + q − y)4 and, since all

the three equations are linear, the sum of this solution and (8.27) is again a solution, so that

v = A(η, ξ, y)
q2

2
+ B(η, ξ, y)q + C(η, ξ, y) + D(ξ + q − y)4, (8.28)

with A, B and C defined by (8.27) and constant D, will satisfy the nonlinear Legendre
transformed mixed heavenly equation (8.15). This solution generically depends on all the four
variables and hence it is a noninvariant solution, i.e. it does not admit Lie symmetries. More
general polynomial solutions can easily be constructed. The sum of the exponential solution
(8.25) and a polynomial solution again satisfies (8.15).

9. Ricci-flat metrics governed by the mixed heavenly equation and its Legendre
transform

In section 8, we have obtained noninvariant solutions (8.25) and (8.28) of the Legendre
transformed mixed heavenly equation (8.15). In order to get the corresponding solution of the
mixed heavenly equation (6.14), we had to perform the Legendre transformation of solutions
(8.25) and (8.28), inverse to (8.7), which is quite a difficult problem.

Instead, we shall proceed, as we did before in [3, 6, 4], by taking into account that,
similar to the complex Monge–Ampère equation and second heavenly equation of Plebañski,
the mixed heavenly equation determines a potential that governs Ricci-flat metrics in the
self-dual gravity. If we are interested only in such metrics as our final result, then instead of
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performing the inverse Legendre transformation of our solution, we make the direct Legendre
transformation (8.7) of the metric related to the mixed heavenly equation. Then our solutions
(8.25) and (8.28) of the Legendre transformed mixed heavenly equation (8.15) at ε = 1, or
any other of its solutions determined by the linear equations (8.19), (8.18) and (8.20), will
yield a potential governing the Legendre transformed mixed heavenly metric.

In order to obtain Ricci-flat metrics related to the mixed heavenly equation, we start with
Husain’s heavenly metric and then use the relation between Husain’s equation and mixed
heavenly equation. Husain’s heavenly metric has the form [13]

ds2 = 2

(
ωt dt + ωp dp +

(
ω2

t + ω2
p

)
�tp

)
, (9.1)

where

ωt = �ty dy + �tz dz, ωp = �py dy + �pz dz, �tp = �ty�pz − �tz�py

with �(t, p, y, z) satisfying Husain’s equation

�tt + �pp + �tz�py − �ty�pz = 0. (9.2)

By the one-dimensional Legendre transformation

� = u − xux, p = −ux, x = �p, u = � − p�p, (9.3)

where the inverse transformation is also given, Husain’s equation (9.2) is mapped into the
mixed heavenly equation with ε = +1:

utyuxz − utzuxy + uttuxx − u2
tx = 1 (9.4)

for the unknown u(t, x, y, z). Performing the transformation (9.3) of Husain’s metric (9.1),
we obtain the metric governed by equation (9.4):

ds2 = 2

{
ωt dt + ωx dx +

1

uxx�

[
(uxxωt − utxωx)

2 + (� + 1)ω2
x

]}
, (9.5)

where

ωt = uty dy + utz dz, ωx = uxy dy + uxz dz, � = utzuxy − utyuxz. (9.6)

By using a REDUCE program, it has been checked that the metric (9.5) is Ricci-flat as a
consequence of equation (9.4).

The asymmetry of the metric (9.5) in variables t and x is caused by the Legendre
transformation (9.3) between p and x, which leaves t untransformed. To amend this lack
of symmetry, we symmetrize the metric (9.5) in t ↔ x and y ↔ z and then introduce t ± x

and y ± z as new coordinates, which we call again t, x, y, z. The resulting mixed heavenly
metric has the form

ds2 = 2

{
ωt dt + ωx dx +

1

�

(
uxxω

2
t − 2utxωtωx + uttω

2
x

)}
. (9.7)

This metric is also Ricci-flat, provided that the potential u satisfies the mixed heavenly
equation (6.14) for both signs of ε. Now we apply the Legendre transformation (8.7) to
the mixed heavenly metric (9.7) with the result

ds2 = 2

{
1

δ
(vtt + εvpp)(vqt dt + vqp dp + vqq dq)2

+ (vqt dt + vqp dp + vqq dq)

[
−dq +

2

δ
(vtqvty + εvpqvpy) dy

]

+
[
vyt dt + vyp dp +

vqq

δ

(
v2

yt + εv2
yp

)
dy

]
dy

}
, (9.8)
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where δ = vtyvpq − vtqvpy and the metric potential v(t, p, q, y) should satisfy the Legendre
transformed mixed heavenly equation (8.15). With the latter condition satisfied, by using
REDUCE we have checked that the metric (9.8) is Ricci-flat and calculated the Riemann
curvature tensor components for an arbitrary v satisfying (8.15). The expressions for these
components are too lengthy to be presented for publication. However, the denominators of the
Riemann tensor components are simple, so that possible singularities of the curvature tensor
either coincide with the singularities of the metric (9.8), being at δ ≡ vtyvpq − vtqvpy = 0, or
are located at vqq = 0, for v being a linear function of q. For the polynomial solution (8.28)
the condition δ = 0 could be satisfied only if all the essential coefficients in (8.28) vanished:
h = g = μ = D = 0, which would contradict the noninvariance of this solution. The only
singularity of the metric corresponding to (8.28) is located at infinity.

As was shown in section 8, we can use any solution of the three linear equations (8.18)
(8.19) and (8.20), which imply (8.15) at ε = 1 as their algebraic consequence. In particular, we
can use the noninvariant solutions (8.25) and (8.28) for v in the metric (9.8). For noninvariant
solutions, there will be no symmetry reduction, so that v will depend on all the four independent
variables, which is a necessary (and often sufficient) condition for the metric components in
(9.8) to depend also on all the four independent variables. For the exponential solutions to the
complex Monge–Ampère equation and to the second heavenly equation, which are similar to
(8.25), we have proved in [6] that the corresponding Kähler metric and the second heavenly
metric admit no Killing vectors. Similarly, for the solution (8.25) we also expect that the
Legendre transformed mixed heavenly metric (9.8) will admit no Killing vectors and hence
no symmetry reduction in the number of independent variables will occur.

10. Conclusion

In the theory of gravitational instantons, heavenly metrics with no Killing vectors (no
continuous symmetries) can only be generated by noninvariant solutions of CMA. Therefore,
we are faced with the problem of obtaining noninvariant solutions of partial differential
equations. Partner symmetries proved to be an appropriate tool for solving such a problem
because noninvariant solutions can be obtained as solutions invariant with respect to a certain
nonlocal symmetry closely related to partner symmetries. Thus, the existence of partner
symmetries for a given PDE is necessary to apply this method. In this paper, we have
obtained a general form of the scalar second-order PDE in four variables, containing only
second derivatives of the unknown, that possesses partner symmetries. Using point and
Legendre transformations, we have transformed this general equation to different simplest
canonical forms and so presented a classification of inequivalent equations which admit partner
symmetries, together with recursion relations for symmetries. Among these equations we find
the well-known first and second heavenly equations of Plebañski and two other nonlinear
equations which we have called the mixed heavenly equation and asymmetric heavenly
equation. The mixed heavenly equation is related by a partial Legendre transformation to
Husain’s heavenly equation arising in the chiral model approach to self-dual gravity. A
particular case of the asymmetric heavenly equation is the evolution form of the second
heavenly equation.

We ignored here all the cases when the canonical equation explicitly contains only three
variables. We leave for the future a classification of PDEs with three variables, that admit
partner symmetries.

We have determined all point and contact symmetries of the canonical equations because
any such symmetries can be used to generate partner symmetries. As an example of application
of partner symmetries, we have shown how to construct noninvariant solutions of the Legendre
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transformed mixed heavenly equation. By applying Legendre transformation in two variables,
the latter equation and differential constraints, that are obtained from recursion relations for
partner symmetries, have been transformed to a set of three linear equations with constant
coefficients that imply the Legendre transformed mixed heavenly equation as their algebraic
consequence. One of these equations involves only three variables and formally coincides with
a certain reduced equation, which determines invariant solutions of the Legendre transformed
mixed heavenly equation, but written in new variables and containing also the fourth variable
as a parameter. Two other equations, involving all the four variables, provide a lift from
invariant to noninvariant solutions of the Legendre transformed mixed heavenly equation.
We have obtained Ricci-flat metrics governed by the mixed heavenly equation and the
Legendre transformed mixed heavenly equation. Using any noninvariant solution of the
three linear PDEs, we satisfy the necessary condition of arriving at Ricci-flat metrics with
metric components depending on all four independent variables. Such metrics will admit no
continuous symmetries and no Killing vectors.

Thus, we conclude that, for a scalar second-order PDE with four independent variables,
the existence of partner symmetries happens to be a characteristic feature of the equations that
describe self-dual gravity in different variables. The partner symmetries provide a tool for
obtaining noninvariant solutions of these equations and Ricci-flat self-dual metrics with no
Killing vectors.
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